IVIUM TECHNOLOGIES

Experts in Electrochemistry & Battery Testing

All-Round entry level potentiostat/galvanostat/ZRA

The Vertex series is our line of all-round entry level potentiostat/galvanostat/ZRA instruments. Each Vertex instrument is available with optional impedance analyser/FRA for EIS. The instruments have been specifically designed to be affordable and robust; the cell cable uses the reliable and durable lyium standard HD15 connector and the cell connection terminals are the well known 4mm banana plugs. The 1.3m cell cable with individually shielded leads is included.

The wide range of voltage and current capability offers a solution for all applications, including educational, basic electrochemistry, high current (battery) testing, electrolyser research and development.

Each Vertex instrument is capable of all standard electrochemical techniques and includes a complete suite of lviumsoft control and data processing software.

AFFORDABLE
SOLUTION FOR
EVERY
APPLICATION

THE VERTEX IS AVAILABLE IN MANY POWER CONFIGURATIONS

Basic

High power

- ±100mA / ±21V
- ±1A / ±30V
- ±350mA / ±13V
- ±1A / ±50V±2A / ±30V
- With peripheral I/O
- ±5A / ±10V
- ±100mA / ±10V

• ±1A / ±10V

- ±10A / ±5V
- ±20A / ±2V

Data acquisition rate 300kHz
Optional FRA/EIS 10µHz to 250kHz/1MHz

KEY SPECIFICATIONS

operation

- Peripheral analog/digital I/O
- Various modules and power boosters available

• WE/RE/S/CE 4-electrode configuration

• User selectable grounded/floating

VERTEX BASIC SMALL SIZE

Anin1, ±10V

VERTEX OVERVIEW	Vertex.One	Vertex.C
Current compliance	±100mA	±350mA
Maximum output Voltage	±21V	±13V
Potentiostat		
Applied potential range	±10V; 0.0)8mV res.
Applied potential accuracy	0.2% (or 2mV
Current ranges	±100pA to	±100mA
Measured current resolution	0.003% of CR, min. 3fA	
Measured current accuracy	20pA + 0.025% of FSR	
Galvanostat		
Galvanostatic current ranges	±10nA to ±100mA	
Measured potential ranges	±1mV to ±10V	
Measured potential resolution	0.0008% of ra	ınge; min. 7nV
Impedance analyser		
Frequency range	Optional 10µHz to 250kHz	10μHz to 1MHz
Amplitude	0.15mV to 2.0V, or 0.03% to 100% of CR	
Bipotentiostat		
Current/offset		Optional ±35mA, ±2V vs. RE or WE
Peripheral		

Analog/Digital I/O

VERTEX WITH PERIPHERAL I/O

Vertex.100mA	Vertex.1A		
±100mA	±1A		
±10V	±10V		
±10V; 0.	08mV res.		
0.2%	or 2mV		
±100pA to ±100mA	±100pA to ±1A		
0.003% of	CR, min. 3fA		
20pA + 0.0	25% of FSR		
±10nA to ±100mA	±10nA to ±1A		
±1mV to ±10V			
0.0008% of range; min. 7nV			
Optional 10µHz to 1MHz			
0.15mV to 2.0V, or 0.03% to 100% of CR			
Optional ±35mA, ±2V vs. RE or WE			
2 An in;1 An out; 1 Dig in; 3 Dig out; I/E out; AC out;Channel X/Y out			

VERTEX.S

Vertex.30V1A	Vertex.50V1A	Vertex.30V	Vertex.5A	
±1A	±1A	±2A	±5A	
±30V	±50V	±30V	±10V	
	±10V; 0	.08mV res.		
	0.2%	or 2mV		
	±100pA to ±1A		±100pA to ±10A	
	0.003% of	f CR, min. 3fA		
	20pA + 0.	025% of FSR		
	±10n.	A to ±1A		
±1mV to ±10V				
0.0008% of range; min. 7nV				
	Optional 10μHz to 1MHz			
0.15mV to 2.0V, or 0.03% to 100% of CR				
Optional ±35mA, ±2V vs. RE or WE				
2 An in;1 An out; 1 Dig in; 3 Dig out; VE out; AC out; Channel X/Y out				

VERTEX.S HIGH CURRENT

	The state of the s		
Vertex.10A	Vertex.20A		
±10A	±20A		
±5V	±2V		
±5V; 0.08mV res.	±2V; 0.08mV res.		
0.2% o	r 2mV		
±100pA to ±10A	±100mA to ±10A		
0.003% of CR, min. 3fA	0.003% of CR, min. 3μA		
20pA + 0.025% of FSR	20pA + 0.025% of FSR		
±10nA to ±10A	±100mA to ±10A		
±1mV to ±10V			
0.0008% of range; min. 7nV			
Optional 10µHz to 1MHz			
0.15mV to 2.0V, or 0.03% to 100% of CR			
2 An in;1 An out; 1 Dig in; 3 Dig out; I/E out; AC out;Channel X/Y out			

pocketSTAT

Handheld potentiostat/galvanostat/ZRA

The pocketSTAT is a complete electrochemical measurement instrument with the size of a smart phone. It has been specifically designed for (field) measurements such as corrosion evaluation and analytical chemistry, but suits any low current electrochemical application. The pocketSTAT is powered via USB and can be controlled from any Windows PC/tablet/laptop.

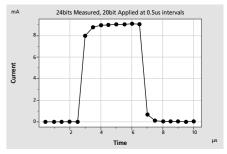
APPLICATION

- Field measurements
- Corrosion
- Coating testing
- Analysis
- Use in a glove box/fume hood

KEY SPECIFICATIONS

- USB powered
- Size: 16/22 x 6.7 x 1.9cm
- Scan range: ±10V @ ±30mA
- FRA/EIS: 10µHz to 1MHz (pocketSTAT2 only)
- Acquisition rate: up to 300,000 pnts/s
- Battery pack & Bluetooth connection available

POCKETSTAT OVERVIEW	pocketSTAT.DC	pocketSTAT2	pocketSTAT2.LC
Electrode connections	3: WE, CE, RE (and Anin)	4: WE, CE, RE, S (and GND)	3: WE, CE, RE
Current compliance	±30mA	±30mA	±30mA
Maximum output Voltage	±10V	±10V	±10V
Potentiostat			
Applied potential range	±10V; 0.08mV res.	±10V; 0.0	08mV res.
Applied potential accuracy	0.2%, or 2mV	0.2%,	or 2mV
Current ranges	±10nA to ±10mA	±100pA to ±10mA	±10pA to ±10mA
Measured current resolution	0.0005% of range; min 0.5fA	0.003% of range; min 3fA	0.003% of range; min 0.3fA
Measured current accuracy	20pA + 0.025% of FSR	20pA + 0.025% of FSR	
Galvanostat			
Galvanostatic current ranges	±10nA to ±10mA	±10nA to ±10mA	±10pA to ±10mA
Measured potential ranges	±10V	±1mV to ±10V	
Measured potential resolution	1µV	0.0008% of range, min. 7nV	
Impedance analyser			
Frequency range		10μHz to 1MHz	
Amplitude		0.15mV to 2.0V, or 0.03% to 100% of CR	
WE bias current	<20pA	<20pA	<20fA
Impedance limit		$>10^{12} \Omega /\!/ 2pF$	$>10^{15} \Omega // 0.2 pF$
Peripheral			
Analog input 1	±10V	±10V	
Compatibility		Various modules & multiplexers	


CompactStat2[™]

Portable USB powered potentiostat/galvanostat/ZRA with integrated impedance analyser

The CompactStat2 is a high end portable potentiostat that can be powered from the USB port of a laptop or PC without additional power supply. With its small footprint (<600 gram) and low power consumption, the CompactStat2 provides a truly mobile electrochemical measurement station that is ideal for use both in the lab and in the field. Its exceptionally high measurement resolution of 24bits gives it a unique level of measurement and control. Among its many applications are corrosion, analytical, nano, bio and battery/fuel cell/electrolyser testing.

24 BIT INSTRUMENT

200A 101 IVILIAN DOUBLE ELECTROCHEMISTRY

- Up to 2,000,000 pts/s
- 1,000,000 samples storage

LOW NOISE AND GALVANIC ISOLATION

The CompactStat2 is electrically isolated from power lines and PC. It has superior noise immunity and is capable of determining very small signals, required in nanotechnology applications. Additionally, the instrument can be applied in situations where the sample must be disconnected from the common ground (floating).

THE COMPACTSTAT IS AVAILABLE IN 3 POWER CONFIGURATIONS

- ±30mA @ ±10V
- ±800mA @ ±10V
- ±250mA @ ±20V

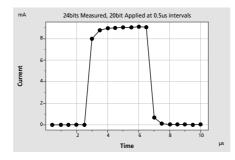
COMPACTSTAT OVERVIEW	Standard	CompactStat2.h10800	CompactStat2.h20250
Current compliance	±30mA	±800mA	±250mA
Maximum output Voltage	±10V	±10V	±20V
Potentiostat			
Applied potential range		(20bit) / ±10V; 0.02mV res.	
Applied potential accuracy		0.2% or 1mV	
Current ranges		±1pA to ±1A	
Measured current resolution		0.00005% of CR, min. 0.5zA	
Measured current accuracy	20fA + 0.025% of FSR		
Galvanostat			
Galvanostatic current ranges	±10pA to ±1A		
Measured potential ranges	±1mV to ±10V ±1mV to ±20V		
Measured potential resolution	0.00001% of range; min. 0.15nV		
Impedance analyser			
Frequency range	10μHz to 3MHz		
Amplitude	0.02mV to 2.0V, and 0.03% to 100% of CR		
Peripheral			
Analog/Digital I/O	2 An in; 1 An out; 1 Dig in; 3 Dig out; I/E out; AC out; Channel X/Y out		
Compatibility		All options and modules	

IviumStat2

24 BIT INSTRUMENT

The IviumStat2 is a high end high power potentiostat with an exceptionally high 24bit resolution. That makes the instrument well suited for applications that require a wide dynamic range. The IviumStat2 is compatible with our complete range of modules and options. Applications include research, corrosion, battery/fuel/cell/electrolyser testing, analysis, bio- and nano electrochemistry, etc.

EXPANDABILITY


The IviumStat2 is fully compatible with all options and modules, including: integrated Bipotentiostat and True Linear Scan, the MultiWE32, ModuLight, multiplexers and all current and voltage boosters.

COMPLETE SOLUTION

The IviumStat2 offers a complete package. The hardware includes a built-in high-performance Frequency Response Analyser and all the standard electrochemical techniques. Complete measurement and data processing software is included.

IVIUMSTATZA RESETROCIONALA INTERNACE INTERNACIONALI DEL CONTROCIONALI DEL CONTROCION

VERY HIGH SAMPLE RATE

- Up to 2,000,000 pts/s
- 1,000,000 samples storage

AUTOMATION

Multiple analog and digital input and output ports are available that can be used to monitor and control peripheral equipment. The software integrates this functionality.

IVIUMSTAT OVERVIEW	Standard
Current compliance	±5A
Maximum output Voltage	±10V
Potentiostat	
Applied potential range	±10V; 0.02mV res. (20bit)
Applied potential accuracy	0.2% or 1mV
Current ranges	±1pA to ±10A
Measured current resolution	0.00005% of CR, min. 0.5zA
Measured current accuracy	20fA + 0.025% of FSR
Galvanostat	
Galvanostatic current ranges	±10pA to ±10A
Measured potential ranges	±1mV to ±10V
Measured potential resolution	0.00001% of range; min. 0.15nV
Impedance analyser	
Frequency range	10μHz to 8MHz
Amplitude	0.02mV to 2.0V, or 0.03% to 100% of CR
Peripheral	
Analog/Digital I/O	2 An in; 1 An out; 1 Dig in; 3 Dig out; I/E out; AC out; Channel X/Y out
Compatibility	All options and modules

XP

High power potentiostat/galvanostat/ZRA

The XP range of potentiostats has been specially designed for high power applications such as battery research, electrolysis and fuel cell development. It is a merger of a potentiostat and a booster in a single housing and is equipped with a full color display that shows real time measurement results.

The XP has all the advantages of both the potentiostat and the booster, such as switching through all current ranges with full resolution at low and high power, high bandwidth to facilitate impedance measurements at high power, etc. It is equipped with an EMergency Off (EMO) functionality, as well as a direct connection for a thermocouple to monitor temperature. Both are accessible directly from the front panel. The XP is capable of all standard electrochemical techniques and includes a complete suite of lviumSoft control and data processing software.

THE XP IS AVAILABLE IN 4 POWER CONFIGURATIONS

- ±5A @ ±100V
- ±10A @ ±40V
- ±20A @ ±20V
- ±40A @ ±10V

SPECIAL FEATURES

- Full color display that shows real time measurement results and graphs.
- Direct thermocouple connection.
- Integrated Current Interrupt function.
- Separate cell cables for low and high currents to ensure the best performance.
- 19inch rack mountable housing.

APPLICATION

The XP is a high power potentiostat that has been designed for applications such as:

- Battery research
- (Bio) Fuel cell measurements
- Electrolysers
- Electrodialysis

₹₽ <u> </u>				
XP OVERVIEW	XP5	XP10	XP20	XP40
Current compliance	±5A	±10A	±20A	±40A
Maximum output Voltage	±100V	±40V	±20V	±10V
Potentiostat				
Applied potential range	±10V; 0.08mV res.	±10V; 0.08mV res.	±10V; 0.08mV res.	±10V; 0.08mV res.
Applied potential accuracy		0.2% o	r 2mV	
Current ranges		±100pA t	to ±10A	
Measured current resolution		0.003% of CR	, min. 0.3pA	
Measured current accuracy		20pA + 0.02	15% of FSR	
Galvanostat				
Galvanostatic current ranges	±10nA to ±10A			
Measured potential ranges	±1mV to ±10V			
Measured potential resolution	0.0008% of range; min. 7nV			
Impedance analyser				
Frequency range	10μHz to 500kHz			
Amplitude (1)	0.15mV to 2.0V, or 0.03% to 100% of CR			
(2)	±5A	±10A	±20A	±20A
Peripheral				
Analog/Digital I/O	2 An in;1 An out; 1 Dig in; 3 Dig out; I/E out; AC out;Channel X/Y out			

Ivium-n-Stat

High power multi-channel potentiostat/ galvanostat/ZRA with integrated impedance analyser

The lvium-n-Stat is a state-of-the-art multi-channel potentiostat/galvanostat with integrated impedance analyser in each channel. It can be operated in grounded or in floating mode. The variety of different channels, the high sensitivity, and the separate or synchronous control of channels allow the lvium-n-Stat to be used in a wide range of applications from research to production testing.

VARIOUS CHANNELS AVAILABLE

- ±2.5A / ±10V (optional BipotentioStat)
- ±5A / ±10V (optional BipotentioStat)
- ±10A / ±5V
- ±2A / ±30V
- ±1A/±50V
- ±20A / ±2V

Dual channel dModule

- 2 x ±2.5A / ±10V
- 2 x ±1A / ±20V

Integrated EIS

All channels include integrated FRA/EIS as standard 10µHz - 250kHz (Optional High Frequency upgrade to 1MHz).

Main frame

- Maximum 8 modules
- Stackable up to 64 channels
- EMO available

EXPANDABILITY

The Ivium-n-Stat main frame contains 8 slots for a maximum of 16 channels and can be stacked up to 8 frames and a maximum of 64 channels. Modules are encased for easy handling so that users can upgrade the number of channels in a simple plug and play manner. An integrated peripheral port with multiple analog and digital input and output signals is available which can be used to monitor and control peripheral equipment. The software integrates this functionality.

SIMULTANEOUS CONTROL

The IviumSoft allows control of separate channels or all channels simultaneously with synchronized start. Data can be plotted per channel or simultaneously for all channels on a single screen.

DUAL CHANNEL d-MODULES

AVAILABLE CHANNEL MODULES	2x 1A / 20V	2x 2.5A / 10V	
Channel performance			
Number of channels in module	2	2	
Current compliance	±1A	±2.5A	
Maximum output Voltage	±20V	±10V	
Potentiostat			
Applied potential range	±10V; 0.0	08mV res.	
Applied potential accuracy	0.2% c	or 2mV	
Current ranges	±100pA	to ±10A	
Measured current resolution	0.003% of 0	CR, min. 3fA	
Measured current accuracy	±20pA + 0.025% of FSR		
Galvanostat			
Galvanostatic current ranges	±10nA to ±10A		
Measured potential ranges	±1mV to ±10V		
Measured potential resolution	0.0008% of range; min. 7nV		
Impedance analyser			
Frequency range	10μHz to 250kHz standard; 1MHz optional		
Amplitude	0.15mV to 2.0V, and 0.03% to 100% of CR		
Bipotentiostat			
Current/offset			
Peripheral			
Analog/Digital I/O	Anin1: ±10V		

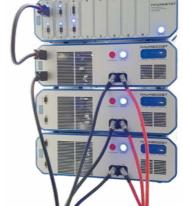
SINGLE CHANNEL s-MODULES

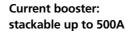
SINGLE CITY WINDS CLES					
2.5A / 10V	5A / 10V	2A / 30V	1A / 50V	10A / 5V	20A / 2V
1	1	1	1	1	1
±2.5A	±5A	±2A	±1A	±10A	±20A
±10V	±10V	±30V	±50V	±5V	±2V
	±10V; (0.08mV res.		±5V; 0.08mV res.	±2V; 0.08mV res.
	0.2%	or 2mV			
		±100pA to ±10A			±100mA to ±10A
	0.003% o	f CR, min. 3fA			0.003% of CR, min. 3µA
	±20pA + 0.025% of FSR				
±10nA to ±10A				±100mA to ±10A	
±1mV to ±10V					
0.0008% of range; min. 7nV					
	10µHz to 250kHz st	andard; 1MHz optional			
	0.15mV to 2.0V, and 0.03% to 100% of CR				
	Optional, ±35mA, ±2V vs. RE or WE				
2	2 An in; 1 An out; 1 Dig in; 3 Dig out; I/E out; AC out; Channel X/Y out				

Instrument Options & Modules

Potentiostat/galvanostat with impedance analyser designed for Electrolyser application

The HE80 series is our line of potentiostat/galvanostat instruments that has been designed especially for electrolyser application. The high current compliance in combination with high voltage capability makes it possible to test larger size electrolysers as well as multi-cell stacks. The integrated impedance analyser/FRA with frequencies up to 10kHz makes in-situ EIS studies possible, both for the total stack, as well as for each cell. The dedicated design offers a capable high power instrument for an affordable price.





DataSecure for connection and PC-independent data storage

Cell and electrode multiplexers: up to 256 channels

Visit our website for a complete overview of our modules and functionality upgrades

Analyser • Current boosters • Multiplexers • RRDE rotator • Bipotentiosta

HE80 OVERVIEW	HE80	HE80-4	
Current compliance	0 to +80A	±80A	
Maximum output Voltage	+0.5V to +20V	±20V	
Potentiostat			
Applied potential range	+0.5V to +20V, 0.15mV res.	±20V, 0.15mV res.	
Applied potential accuracy	0.2%,	or 2mV	
Current ranges	±10A aı	nd ±100A	
Measured current resolution	0.003% of current range, min. 0.3mA		
Measured current accuracy	0.1% of range + 0.2% of value		
Galvanostat			
Galvanostatic current ranges	+10A and +100A	±10A and ±100A	
Measured potential ranges	+2mV to +20V	±2mV to ±20V	
Measured potential resolution	0.0008% of potential range, min. 14nV		
Impedance analyser			
Frequency range	10μHz to 10kHz		
Amplitude	0.15mV to 2.0V, or 0.15% to 100% of current range		
Peripheral			
Analog/Digital I/O	2 An in; 1 An out; 1 Gig in, 3 Dig out; I/E out; AC out; Channel X/Y out		

demoSTAT

Smart introduction to electrochemical instrumentation

The demoStat is a small USB-powered potentiostat/galvanostat/ ZRA with integrated FRA/EIS. It can perform all conventional electrochemical techniques, including EIS. It is intended as a low-cost investment for feasibility studies and demonstration, but is also perfectly suited for training and education. It is controlled via a USB connection from any netbook, laptop or PC that is Windows operated.

Compliance: 5mA@3V (2mA@6V) FRA/EIS: 10µHz - 100kHz Size: 95 x 60 x 8mm

ivium.com ivium.com

Ivium Battery testers

Why choose Ivium Technologies for your battery cycler needs?

ADVANCED TECHNOLOGY

Ivium Technologies is at the forefront of battery testing technology. We offer advanced Battery Cyclers that provide exceptional performance, accuracy, and ease of use. Our products are designed to meet the most demanding requirements of the battery testing community.

RELIABLE PERFORMANCE

Our Battery Cyclers are designed and manufactured to the highest standards, ensuring reliable performance and accuracy. Our products are used by leading institutions around the world, and we are proud of our reputation for quality and dependability.

CUSTOMISABLE SOLUTIONS

Ivium Technologies offers a range of Battery Cyclers to meet the unique needs of each customer. Whether you need a compact, portable solution or a multi-channel, high-performance system, we have a product to meet your requirements.

- Ivium offers 3 years warranty on our instruments
- IviumSoft is included for free with each potentiostat purchase

lvium Technologies Eindhoven, the Netherlands www.ivium.com info@ivium.com

2025 © Specifications subject to change