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Equivalent circuit fitting with non-linear elements 

 

Abstract 
 

A novel tool for EIS data analysis was developed for the study of nonlinear impedances, as an 

extension of the equivalent circuit analysis. The higher order impedances of an electrochemical 

process can be determined by using the combined 1st, 2nd, and 3rd harmonic responses. This 

method can be executed with the same ease as the classical equivalent circuit analysis. It can 

be applied on most Electrochemical Equivalent circuits, accounting for series and parallel 

elements in a rigorous manner, such as in the Randles circuit, on the full frequency range. 

Electrochemical objects generally have a non-linear IV relation, therefore the amplitude must 

be kept small for the classical EIS linear analysis to be valid. Although non-linear EIS has been 

applied on several occasions, its use has been limited due to the complexity of the analysis. This 

is especially true if other equivalent circuit elements need to be included, such as series resistors 

and parallel capacitors, as the rigorous analysis is a laborious exercise. That job is made easy 

by the application of this tool.  

There are several advantages of the non-linear analysis. Higher amplitudes may be applied 

without causing measurement artefacts, resulting in impedance results with a better signal/noise 

ratio. Also, extra information is obtained from the 2nd and 3rd order impedance derivatives.  For 

Butler-Volmer type reactions, these can be used to determine Tafel slopes and rate constants. 

For semiconductors and batteries, higher orders offer great potential due to their higher 

sensitivity.  

 

 

  



 
 

1. Introduction 

The higher orders offer a potential promise for more information. Historically, going from 0th-order 

(DC) techniques to 1st-order (impedance) meant more measurable parameters[1-4]. Likewise, 

extending our scope to the higher orders could lead to a comparable extension of descriptive 

properties.  

Real systems in the physical world typically exhibit non-linear electrical relations. Their response is 

usually not directly proportional to the perturbation. Often, nature exhibits exponential and to-the-

power relations. In DC techniques this is well known, and its data is analyzed according to non-linear 

models. However, in conventional impedance techniques, linearity is assumed, otherwise analysis 

would become too complex; one assumes that the response is directly proportional to the applied 

amplitude, and the response normalized to an “amplitude independent impedance”. 

The assumption of linearity, though formally wrong, can nevertheless be applied in practice when we 

are using very low amplitudes. At low amplitudes, the higher power responses are small and can be 

neglected, so the system behaves as if it were linear. The question “which amplitude is small 

enough”, cannot be answered without knowledge about the system to be tested. Often a practical 

limit of 10mV is advocated. However, there is no guarantee that this is low enough for each system. 

On the other hand, it may be too conservative for other systems that could benefit from the better 

measurement accuracy at higher amplitudes. 

In potentiostatic impedance spectroscopy, one applies a voltage sinewave with a base frequency, 

and measures the current response at that same frequency. If the system does not exhibit non-

linearity, the current response would be only on that frequency. However, when nonlinearity comes 

into play, the system will respond with currents on more frequencies. 

order Amp 

scaling 

DC 1Hz 2Hz 3Hz 4Hz 5Hz 6Hz Etc.  

0 1 X               

1 A   X             

2 A^2 X   X           

3 A^3   X   X         

4 A^4 X   X   X       

5 A^5   X   X   X     

6 A^6 X   X   X   X   

7 A^7   X   X   X   X 

Etc.                   

  

Figure 1: Response on a 1Hz sinewave perturbation, for a non-linear system 

In Figure 1, the table shows the relation with “Orders” and “Harmonics”. The 1st order response 

results in a single harmonic at the base frequency that scales with the amplitude (which is the one 



 
 

we target in conventional impedance spectroscopy). The 2nd order results in a DC offset and an 

harmonic at 2x the base frequency and scales quadratically with the amplitude, etc. It is important to 

see that all the higher odd orders (3, 5. ..) will also create a 1st harmonic response, and thus introduce 

impedance measurement errors in conventional 1st order measurements, see Figure 2. 

Also, Figure 1 illustrates the difference between “order and harmonic”. When we experience 3rd 

order behavior, we are not only looking at the 3rd harmonic, but also to the 1st. Therefore, these two 

terms should clearly be distinguished in formulation. 

 

 

Figure 2: Impedance measurement result, at varied amplitude. The higher odd orders (mostly 3rd), will 

contaminate the 1st harmonic, resulting in errors at higher amplitudes.  

 

In the practice of conventional impedance measurements, we would like to use as large an amplitude 

as possible to get the best measurement accuracy, but still avoiding non-linearity errors. Several 

verification tests have been proposed: 

• Visual inspection of the E/I time graphs: The human eye can detect deviations from the pure 

sine shape. It is often used as first check, but it is not sensitive enough to rule out smaller 

deviations, and it is subjective. 

• Kramers Kronig test: This is a mathematical modelistic calculation from a complete frequency 

scan. Unfortunately, it is rather unsensitive to nonlinearities, and the data could already be 

seriously wrong before it fails [5-7]. 

• Total Harmonic Distortion THD: One calculates the sum of all the harmonics, relative to the 

base frequency. This has the drawback that it also sums over the even harmonics, which do 

not cause errors, and data would be disqualified too early. Moreover, it is difficult to define a 

quantitative threshold above which data should be rejected. 

• Amplitude variation:  Repeat the experiment at a different amplitude, until the result 

becomes “amplitude independent”. This appears most reliable but takes more time. 
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Figure 3: Decreasing Nyquist circle radius at increasing amplitude. Symbols are experimental points, 

lines are fitting results. All these fit perfectly to the (1st order) equivalent circuit. Therefore, a good 

quality of fit cannot be used as criterium to rule out linearity errors. 

 

In conventional impedance spectroscopy, when we detect non-linear phenomena in our data, we 

have little choice but to discard that data, and try again at a lower amplitude, see Figure 3.  

 

 

2. Deriving information by measuring non-linear responses 

2a Potential benefits of non-linear data 

Instead of seeing non-linearity as nuisance that must be avoided, one could also try to get useful 

information from such data. The higher orders tend to be more sensitive to the electrochemical 

phenomena that we are interested in: Ohmic resistance and double layer capacitances usually do not 

have much response above the 1st order, so at higher orders, we will see more sensitivity to reaction-

kinetics and other surface processes. 

When we are collecting higher harmonic data, we extend the amount of dataresults that can be 

subjected to study. In principle, each extra harmonic will yield an extra set of Bode/Nyquist plots. The 

availability of the extra plots could discriminate between competing models that could not be 

discerned from conventional impedance data. 
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Examples where non-linear analysis is beneficial: 

• In electrode kinetics and corrosion, one needs to assume a value for the Tafel slopes to 

obtain rate constants from EIS data. Using 3rd order data-analysis will remove the need for 

assumptions, as the rate constants will follow directly from the result. 

• Low amplitude techniques may not produce enough accuracy due to a bad signal/noise ratio. 

A multi-order analysis allows the use of higher amplitudes, without introducing errors. 

• When using galvanostatic techniques, we have no control over the voltage, which is the 

actual driving force causing non-linearities. It is therefore possible to inadvertently get into a 

non-linear regime. Having the multi-order result available will avoid/detect such errors. 

• Batteries and semi-conductors (solar cells) have rather stable first order impedance results. 

For detecting small changes early, the more pronounced featured results from the higher 

orders will be more sensitive. 

2b Practical analysis 

The order refers to the order/power of the differential equation. For example, a 2nd order would 

correspond to the 2nd derivative of the Potential/Current relation, etc. Also, the response magnitude 

scales with the amplitude to the power of that order, see Figure 1.  

To calculate physical parameters from data, we need to write out the differential equations, and 

model that to the experimental data. The data would be the impedance data with the list of 

measured harmonics.  

In the 1st order technique (conventional impedance EIS) we have a convenient trick. We can 

transform our time-domain-data to the frequency domain with Laplace (or Fourier) transformation 

[3]. In the frequency domain, we can do calculations in a convenient manner, and simply build an 

“equivalent circuit” by adding standard components together. For higher orders, this “trick” ‘does 

not apply, and we have to revert back to solving the differential equations for each separate case.  

A major complication is the impact of series components in the network. When components are in 

series with each other, the local amplitude is not the voltage that the potentiostat/galvanostat 

applies on the external electrodes. Suppose you have a pure resistor in series with a non-linear 

capacitor, the voltage divides over the two, which varies with frequency. So that capacitor will see a 

larger amplitude at low frequencies than at high frequencies. Any analysis must take this amplitude 

variation into account, because the “phenomena under test” are not linearly scaling with amplitude 

(amplitude cannot be divided out). Sometimes in a non-linear data evaluation, the complication of 

local-amplitude is avoided by neglecting the series components (such as series resistance) [8]. 

However, that inevitably leads to a narrowing of the application field, as such assumptions are 

usually unrealistic for practical systems. 

Solving the differential equations, and performing the non-linear network analysis is quite time 

consuming and tedious. It is not expected that many will go that route. Therefore, we developed a 

tool “IviFit”, that is as convenient as equivalent circuit fitting, and still can analyze the data 

rigorously. We abstracted the nonlinearities into a novel component, that does all the required math 

for higher orders and network analysis. The novel component can be fitted, and will yield the 

numerical results of the order derivatives. Thus, we maintain universal applicability. This means that 

we can do the higher order analysis, without prior assumptions on the reactionsmechanisms, mass 

transfer etc. , actually similar as for conventional 1st order impedance analysis. 

 



 
 

3. Non-linear equivalent circuit fitting with IviFit 

With IviFit, the equivalent circuit can be defined as usual by dropping visual components on a 

network grid, see Figure 4. The innovation is the introduction of an additional component: H. This 

component corresponds with a set of derivatives that can apply to any Potential/Current relation. In 

this manner, the tool is compatible with any electrochemical process of choosing. See Appendix 1, for 

an example with the Butler-Volmer relation. 

The H component can optionally have 2 or 3 orders, selectable in fitting options. These translate to 

the fit-able parameters h1, h2, and h3. Only one H element can be placed in the network grid, and it 

cannot be combined with the ladder network Z. At present, the tool is analyzing up to the 3rd order. 

For most realistic systems, 3 orders are enough to cope accurately with amplitudes up to 150mV. 

The fitting can be done as usual. The 3rd order analysis will yield 3 sets of complex plots that are used 

in the fitting, see Figure 5. The experimental points of the higher order 2 and 3 impedances are 

calculated indirectly. A proper potentiostat will force a clean 1st harmonic on the cell, so under 

potentiostatic conditions, there are no experimental 2nd and 3rd harmonic potentials to be measured 

(for galvanostatic, no higher harmonic currents). We use the relations in Appendix 2, to construct the 

higher order impedance plots, by relating these to the applied base frequency. 

To be complete, we also need to consider the extra DC bias, due to the even orders. The 2nd ,4th ,.. 

orders will also create a DC response, see Figure 1. Fortunately, their impact can usually be 

neglected, see appendix 3. 

Note that the amplitude is an important property. The plots will sharply change if the experiment 

would be repeated at another amplitude, or for a system with slightly different resistance. However, 

the H parameters results h1, h2, and h3 are amplitude independent. Therefore, it is more useful to 

list and compare the H parameters from different experiments, than it would be to compare raw 

results. 

 



 
 

 

Figure 4: Equivalent Circuit Fitting with a non-linear component (semiconductor). Blue=1st order; 

red=2nd order; green=3rd order. The symbols are experimental points, whereas the lines are calculated 

from the fitted model. 



 
 

 

Figure 5: Nyquist plots, corresponding to Figure 4. The extra red line in the Z1 plot is the theoretical 1st 

order impedance (zero amplitude). 

 

4. Conclusion and discussion 

It was demonstrated how the IviFit can be used for non-linear EIS analysis. An equivalent circuit 

component “H“ was introduced that represents the impedance orders up to the 3rd.  The several 

benefits of this approach are demonstrated: 

• Higher amplitudes, up to 150mV, can be used without introducing artefacts, when higher 

Signal/Noise ratios are required 

• IviFit delivers 3 impedance plots, instead of only 1, increasing the amount of information that 

is obtained from a single experiment. 

• IviFit delivers “amplitude independent” higher order dataparameters h1/h2/h3, that allow 

comparison of data obtained at different experimental circumstances. This is a major point, 
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because raw data from higher orders cannot be compared sensibly, due to the non-equal 

scaling of equivalent circuit elements with amplitude. Even if exactly the same amplitude 

were to be used by the potentiostat, small variations in ohmic resistance or surface area 

would cause differences in local amplitudes, resulting in major changes in the raw data. 

• In corrosion and electrode kinetics, by using a 3rd order analysis, we can obtain the rate 

constants, without prior assumption of the Tafel slopes. 

• For semiconductor (and solarcell) impedance analysis results, we have similar relations from 

semiconductor theory, and can translate the result to physical meaning. 

 

In cases where the Current/Potential relation has not been fully established yet, such as batteries 

and fuel cells, the mathematical formulation of the higher order might be difficult. However, the 

result for h1/h2/h3 can still serve as markers or fingerprints for the state of the system. Moreover, 

the availability of this data may allow the development & testing of theoretical models, eventually 

leading to mathematical definition of the derivatives, and therewith giving direct physical meaning to 

the h1/h2/h3. 

The potential advantage of moving to the higher order techniques is the promise of better sensitivity. 

This was already realized early on [9-10]. It is now well known that the 1st order impedance result is 

more sensitive than for the 0th order DC technique. Every next higher order derivative is more 

pronounced and shows more detail. This novel approach could therefore become a powerful 

addition to the R&D arsenal of tools. 
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Appendix 1 : Example deriving physical meaning from H, using the Butler-Volmer relation  

From the Butler-Volmer equation [1]:  

J = J0 (exp(BaE) – exp(-BcE)) 

we calculate differentials Xn = (dnJ/dEn)   

X1E=0 = J0 ( Ba  + Bc  ) 

X2E=0 = J0 ( Ba2 – Bc2 ) 

X3E=0 = J0 ( Ba3 + Bc3 ) 

,that can be converted to differentials hn = (dnE/dJn) 

h1 = 1/X1 

h2 = -X2/X13   

h3 = (2*X2-X1*X3)/X15 

thus, the fitting results h1, h2, and h3 can be used to determine physical parameters. The fitted 

h1,h2,h3 from Figure 6 do define X1,X2,X3, from which directly follows J0, Ba,Bc.  

 

Figure 6: Corrosion of Steel in 0.25M KCl, impedance scan 1kHz-20mHz, at OCP with 100mV 

amplitude, fitted to circuit with series resistor, parallel CPE and the nonlinear H 

J : current density 
J0 : exchange current density 
Ba : Tafel slope, anodic 
Bc : Tafel slope, cathodic 
E : potential, relative to the equilibrium potential 



 
 

 

Appendix 2: Equations and definitions 

The results can be expressed as Taylor expansions: 

Potentiostatic:  

I = (dI/dE) E +1/2 (d2I/dE2) E2 +1/6 (d3I/dE3) E3 + …  

 =       Y1 E +1/2          Y2 E2 + 1/6         Y3 E3  

or galvanostatic:  

E = (dE/dI) I +1/2 (d2E/dI2) I2+1/6 (d3E/dI3) I3 + …  

   =        Z1 I + 1/2          Z2 I2 +1/6        Z3 I3  

with  Z1 = (dE/dI)   Z2 =  (d2E/dI2)   Z3 =  (d3E/dI3)  

with Z as impedance and Y as admittance (complex). 

When we construct the experimental higher order impedances, we refer these to the perturbing 

signal. These relations are derived from the Taylor expansions. 

Potentiostatic 

Y1  =  (I1-3I3)/E1   Z1= 1/Y1 

Y2  =  4I2/ E1
2  Z2= -Y2/Y1

3 

Y3  = 24I3/ E1
3  Z3= (3Y2

2-Y1Y3)/Y1
5 

Galvanostatic 

Z1 = (E1-3E3)/I1 

Z2 = 4E2/I1
2 

Z3 = 24E3/I1
3 

Thus, the higher order Bode-, Nyquist- plots are constructed. Note that every order impedance is 

complex with imaginary and real parts, so each has a magnitude and phase angle. As the impedances 

are defined relative to the perturbing base frequency, the phase plots of the higher harmonics 

display the shift with respect to the base harmonic. The higher order observed phase shifts may 

therefore become larger than conventional ones, as the degrees/radians refer to their own harmonic 

period. 

 

Appendix 3: Induced DC bias, “The Faraday rectification effect” 

The even orders, induce a DC component alongside their higher harmonics, see Figure 1. This is 

sometimes called the “Faraday rectification effect”[9]. If there are no series components to the 

nonlinear component, the potentiostat will correct for this. However when there is a series 

component (resistor), a complication might arise. 

Suppose we apply potentiostatic a voltage over a cell with a nonlinear component. The cell will 

respond with a range of current harmonics. The 2nd order (and 4th, 6th, etc.) will also create an extra 



 
 

DC current on top of the “normal” DC current. The potentiostat will provide this extra current, while 

still maintaining the applied set DC potential. However, if there is a series resistor to the nonlinear 

component, that extra DC current will induce a voltage drop over this resistor, and the local DC 

voltage over the nonlinear component is no longer the “operator selected potentiostat-applied” DC 

bias.  

The shift in DC bias voltage over the nonlinear component will move the equilibrium potential 

slightly, affecting the “quasi DC equilibrium state” of electrode kinetics and mass transfer. To account 

for this, theoretical models would need to be applied, and the universal applicability of the tool 

would be lost.  However, this effect is usually small enough to neglect. To avoid making such errors 

inadvertently, the Ivifit tool will display a warning when the induced local voltage shift exceeds 2mV. 


